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1 Statement of the Problem

Our research aims to develop a framework for adaptive and parallel computation [30, 31}
on geometrically complex regions. In particular, we investigated dynamic load balancing,
transient solution techniques, and error estimation procedures for adaptive computation.
Load balancing includes geometrically- and topologically-based procedures that are suit-
able for heterogeneous computation involving p- and hp-refinement, time dependence
including local time stepping and method orders, diverse computing systems (e.g., clus-
ters of workstations), and hierarchical networks (e.g., networks of SMPs). Appropriate
time integration techniques include explicit methods and implicit one- and multi-step
methods. The explicit methods are useful for problems having very rapid dynamics.
Implicit multistep methods are generally more efficient than one-step methods; however,
this need not be the case when local time steps and method orders are used. A pos-
teriori error estimation focus on procedures for transient problems with emphasis on
singularly-perturbed parabolic and hyperbolic problems, high-order methods involving
p- and hp-refinement, and the coordination of spatial and temporal errors.




2 Summary of Important Results

2.1 Geometry-Based Object-Oriented Simulation Framework

To date, consideration of object-oriented programming in simulation software has focused
on flexible structures with code reuse, application of symbolic computing, operating in
parallel, linking with design processes, and supporting interacting multiphysics simula-
tions. Building on these efforts and the needs of adaptive simulation technologies, we
have constructed a geometry-based simulation frameworks that supports parallel adap-
tive simulation capabilities. This system, referred to as Trellis is based on [6, 5):

e A set of geometry-based structures which can support; (i) the direct linkage with
company CAD information, (ii) all forms of adaptivity without introducing ge-
ometric approximation errors, and (iii) the high level integration of multiscale,
multi-physics analysis methodologies.

e A careful decomposition of the geometry, physics, mathematical model, discretiza-
tion and numerical methods into interacting classes. These structures support a
variety of equation discretization methods. Both finite element [6, 5] and partition
of unity methods have been implemented [25, 24].

e Adaptive control of each step of the simulation process from the selection of the
mathematical model, through the model and domain discretization, to the selection
of application of the numerical methods to solving the discrete system.

Conceptually Trellis is built on the view of an analysis as a transformation between
three levels of description. The highest level description is that of the physical problem
which is posed in terms of physical objects interacting with their environment. Since the
goal of the analysis is to obtain reliable estimates of the response of the system the second
level is a mathematical problem description that introduces some level of idealization,
which also needs to be controlled to yield the desired accuracy. The third level is the
numerical discretization constructed from a mathematical problem that involves another
set of idealizations which also need to be controlled.

The structures used to support the problem definition, the discretizations of the model
and their interactions are central to Trellis. The two structures of the geometric model
and attributes are used to house the problem definition. The analysis discretizations are
housed in the mesh structure. The final structure is the field structure which houses
numerical solution results.

The geometric model representation is a non-manifold boundary representation based.
The representation used for a mesh is similar to that used for a geometric model: a hi-
erarchy of regions, faces, edges and vertices. In addition, each mesh entity maintains a
relation, called classification, to the model entity that it was created to partially repre-
sent. Understanding how the mesh relates to the geometric model is critical for both
mesh adaptivity and understanding how the solution relates back to the original prob-
lem description. The topological representation can also be used to great advantage in
performing adaptive p-version analyses as polynomial orders can be directly assigned to
the various entities.




A problem with many “classic” numerical analysis codes is that the solution of an
analysis is given in terms of the values at a set of discrete points. Trellis eliminates this
problem by introducing a construct known as a field which describes the variation of a
tensor over one or more entities in a geometric model. The spatial variation of the field is
defined in terms of interpolations defined over a discrete representation of the geometric
model entities, which can be a mesh.

The Trellis analysis process is a series of transformations of the problem from the
original mathematical problem description through to sets of algebraic equations ap-
proximately representing the problem. The mathematical problem description level is
described by a ContinuousSystem class, which contains the geometric model and the at-
tributes which apply to that model, specified by a particular case node in the attribute
graph. An instance of a ContinuousSystem is then transformed to an instance of the class
DiscreteSystem which represents the discretized version of the model and attributes and
the weak form of the partial differential equation (PDE). The particular analysis class
that is used depends on the selected weak form of the PDE to be solved.

The DiscreteSystem class represents the problem in terms of contributions from a set
of objects that live on the discrete representation of the model. These objects are called
SystemContributors. There are three types of SystemContributors: StiffnessContributors
contribute coupling terms between degrees of freedom of the system, ForceContributors
contribute terms to the right hand side vector, and Constraints set specific values or
constraints to given degrees of freedom. These objects are created by the Analysis object
and correspond to an interpretation of attributes consistent with the weak form that the
Analysis implements.

The Analysis class creates all of the SystemContributors and adds them to an instance
of a DiscreteSystem. The DiscreteSystem is transformed into an AlgebraicSystem, an
Assembler object. Multiple linear solvers can be used to solve the AlgebraicSystem. The
most extensive capability included is the Portable, Extensible Toolkit for Scientific Com-
putation (PETSc) from Argonne National Laboratory. These procedures have the dual
advantage of working effectively in an object-oriented analysis framework and providing
an efficient set of linear algebra routines.

Trellis is not complete, but is being used to address complex problems involving com-
pressible flows [20, 18, 19, 17, 16] and other problems. Steady and transient compressible
flow problems may be solved by a Galerkin space-time finite element formulation [30] with
a least squares stabilization. Compressible flow problems with more transient effects are
solved by a discontinuous Galerkin method with explicit time integration and local time
stepping [18]. This method is proving to be very efficient since small time steps are
restricted to regions containing shocks, expansions, and other nonuniformities. Three-
dimensional acoustics problems [28, 34] are treated by high-order methods with A- and
p-refinement. The same base software, including the adaptive and parallel procedures,
can handle these diverse applications.

Ezample 1. We illustrate some capabilities of the Trellis framework by using the ex-
plicit discontinuous Galerkin software {18, 20] to address the three-dimensional unsteady
flow of a compressible gas in a circular cylinder that contains a cylindrical vent. This
problem was motivated by shock tube studies as part of an investigation of perforated
muzzle brakes for large-calibre cannons. Our focus is on the quasi-stationary flow that
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exists behind the contact surface (diaphragm of the shock tube) for a short time. Thus,
we initiate the problem with a Mach 1.23 flow of helium in the main tube and a quiet flow
in the vent. A hypothetical diaphragm between the vent and the main tube is ruptured
at time zero to direct the flow into the vent. Using symmetry to divide the problem in
half, we calculate solutions on 16 processors of an IBM SP2 at the Rensselaer Polytech-
nic Institute using local h-refinement with an initial mesh of 80,659 tetrahedral elements.
Mesh partitioning was done by a parallel octree traversal at each adaptive h-refinement
step.

In Figure 1, we show projections of the Mach number and velocity vectors (left) and
of the the mesh and partitioning used onto the symmetry plane and cylindrical surfaces
near the vent at three (dimensionless) times.

The flow accelerates as it enters the vent. A strong shock forms near the downwind
vent-shock tube interface and a portion of the flow in the vent accelerates to supersonic
speeds. The reflection of the flow from the downwind vent face produces a component
of the flow at the vent exit in a direction opposite to the principal flow direction. In
a cannon, this reduces recoil. Flow features compare well with experiments and earlier
computational results. The mesh is concentrated in the shock and expansion regions and
remains so as these features evolve. Likewise, an initially (quasi) uniform partitioning
is adjusted to contain the smaller elements formed in the shock and expansion regions.
Variable time steps that are smaller on the smaller elements of the mesh are not visible in
the figure. This three-dimensional unsteady problem would be difficult to solve without
such adaptivity.

2.2 Dynamic Load Balancing

We developed three dynamic load balancing schemes: iterative tree balancing [20, 31, 30],
parallel sort inertial bisection (PSIRB) [31, 30], and octree partitioning (OCTPART)
[20, 18, 21]. The first is iterative (incremental) and the latter two are direct (global).
All execute in parallel on a spatially-distributed mesh as part of the adaptive system.
Performance of all load balancing procedures can be enhanced by partition boundary
smoothing, predictive load balancing, and weighting. Weighting accounts for the com-
plexities of adaptive p-refinement, local time stepping, and heterogeneous computing
environments. Partition boundary smoothing [20] eliminates elements that protrude into
another partition; thus, unnecessarily increasing the number of element faces on partition
boundaries. These can be reduced by a single boundary traversal, which is both inexpen-
sive and effective. Predictive load balancing uses the enrichment schedule to anticipate
and correct an imbalance before element migration proceeds [20, 18, 19, 21]. It provides
a better balance during migration, saves time by, typically, working on a coarser mesh
prior to refinement, and often avoids the need for rebalancing during the subsequent com-
putational step. The procedure has been able to reduce rebalancing times by as much as
35% and total computational time by as much as 20% [20].




2.3 Parallel Data Management

We are developing a system called the Rensselaer Partition Model (RPM) to manage
heterogeneous computation [33]. The system is hierarchical with a Partition Model de-
_scribing how the domain is divided for computation. Each mesh entity is classified on
a single partition model entity. The partition model is a topological construct similar
in concept to the boundary representation used to represent the domain geometry and
mesh. The Process Model is a disconnected set of nodes with each node representing a
single process or thread of execution. Each process model entity can control one or more
partition model entities. The Machine Model describes the computational environment
where the process is running. The model is a graph that describes the various hierar-
chies of the computational environment. Each terminal node of the graph represents
a single CPU that has certain properties such as available memory and computational
power. Higher nodes in the graph represent the grouping of processors into SMP nodes or
computer clusters. Each processor can communicate with any other processor; however,
preferential communication paths are represented in the graph.

2.4 A Posteriori Error Estimation

Our concentration has been on developing a posteriori error estimates for singularly-
perturbed reaction- and convection-diffusion problems. We have developed very simple
estimates that use an odd-even dichotomy principle of Babuska. The errors of odd-order
finite element approximations arise near element boundaries and may be computed from
jumps in solution gradients at element vertices. Conversely, the errors of even-order
approximations arise in element interiors and may be computed by solving element-level
finite element problems using “bubble functions” that vanish on element boundaries
[3]. Error estimates computed in this manner are asymptotically correct on rectangular
elements. Evidence suggests that they are also correct for triangular and quadrilateral
[2] elements. Error estimates developed for product spaces [3] have been extended to
modified hierarchical spaces [2].

We have showed that the spatial discretization errors of hyperbolic problems could
be estimated by using Radau polynomials. This was based on earlier work of Adjerid et
al. [1] who showed that the Radau points are superconvergence points for convection-
diffusion problems in the limit of vanishing diffusion. These results provide simple error
estimation procedures for hyperbolic problems.

2.5 Solution Procedures

We have continued to investigate preconditioning techniques for large, sparse, linear
systems. In doing this, our efforts have focused on the major area of applying the
AMLI preconditioner in parallel. We have generated and tested a preliminary version
of a parallel, p-level (polynomial-level) preconditioner and have demonstrated its utility
in parallel [34]. We are working on performance and scalability improvements to this
algorithm.
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